Back to Search Start Over

A conserved hydrogen-bond network stabilizes the structure of Beta class glutathione S-transferases

Authors :
Federici, Luca
Masulli, Michele
Gianni, Stefano
Di Ilio, Carmine
Allocati, Nerino
Source :
Biochemical & Biophysical Research Communications. May2009, Vol. 382 Issue 3, p525-529. 5p.
Publication Year :
2009

Abstract

Abstract: We identified a network of hydrogen bonds that is conserved in the structures of bacterial Beta class glutathione S-transferases (GSTs). It is formed by three residues: a serine, a histidine and a glutamate, together with a water molecule that links the serine with the histidine. This network connects the first helix of the N-terminal glutaredoxin-like domain with the last helix of the C-terminal GST-specific all helical domain. Here we show that substitution of Ochrobactrum anthropi GST His15 and Glu198 with alanine greatly compromises the catalytic efficiency of the enzyme, even though none of these residues takes part to the enzyme active site. Thermal and chemical denaturation experiments point to a role for this network in global structure stabilization. Furthermore, we show that OaGST structure looses compactness at alkanine pHs and that this behavior may be ascribed to partial disruption of the H-bond network, pointing to an important role in zippering the N-terminal and C-terminal domains of the protein. [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
0006291X
Volume :
382
Issue :
3
Database :
Academic Search Index
Journal :
Biochemical & Biophysical Research Communications
Publication Type :
Academic Journal
Accession number :
37570982
Full Text :
https://doi.org/10.1016/j.bbrc.2009.03.052