Back to Search Start Over

Concentrated Ambient Particles Alter Myocardial Blood Flow during Acute Ischemia in Conscious Canines.

Authors :
Bartoli, Carlo R.
Wellenius, Gregory A.
Coull, Brent A.
Akiyama, Ichiro
Diaz, Edgar A.
Lawrence, Joy
Okabe, Kazunori
Verrier, Richard L.
Godleski, John J.
Source :
Environmental Health Perspectives. Mar2009, Vol. 117 Issue 3, p333-337. 5p. 2 Diagrams, 2 Charts, 2 Graphs.
Publication Year :
2009

Abstract

BACKGROUND: Experimental and observational studies have demonstrated that short-term exposure to ambient particulate matter (PM) exacerbates myocardial ischemia. OBJECTIVES: We conducted this study to investigate the effects of concentrated ambient particles (CAPs) on myocardial blood flow during myocardial ischemia in chronically instrumented conscious canines. METHODS: Eleven canines were instrumented with a balloon occluder around the left anterior descending coronary artery and catheters for determination of myocardial blood flow using fluorescent microspheres. Telemetric electrocardiographic and blood pressure monitoring was available for four of these animals. After recovery, we exposed animals by inhalation to 5 hr of either filtered air or CAPs (mean concentration ± SD, 349.0 ± 282.6 µg/m3) in a crossover protocol. We determined myocardial blood flow during a 5-min coronary artery occlusion immediately after each exposure. Data were analyzed using mixed models for repeated measures. The primary analysis was based on four canines that completed the protocol. RESULTS: CAPs exposure decreased total myocardial blood flow during coronary artery occlusion by 0.12 mL/min/g (p < 0.001) and was accompanied by a 13% (p < 0.001) increase in coronary vascular resistance. Rate--pressure product, an index of myocardial oxygen demand, did not differ by exposure (p = 0.90). CAPs effects on myocardial blood flow were significantly more pronounced in myocardium within or near the ischemic zone versus more remote myocardium (p interaction < 0.001). CONCLUSIONS: These results suggest that PM exacerbates myocardial ischemia by increased coronary vascular resistance and decreased myocardial perfusion. Further studies are needed to elucidate the mechanism of these effects. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00916765
Volume :
117
Issue :
3
Database :
Academic Search Index
Journal :
Environmental Health Perspectives
Publication Type :
Academic Journal
Accession number :
37251924
Full Text :
https://doi.org/10.1289/ehp.11380