Back to Search Start Over

A simple ballistic material model for soda-lime glass

Authors :
Grujicic, M.
Pandurangan, B.
Coutris, N.
Cheeseman, B.A.
Fountzoulas, C.
Patel, P.
Templeton, D.W.
Bishnoi, K.D.
Source :
International Journal of Impact Engineering. Mar2009, Vol. 36 Issue 3, p386-401. 16p.
Publication Year :
2009

Abstract

Abstract: Various open-literature experimental findings pertaining to the ballistic behavior of glass are used to construct a simple, physically based, high strain-rate, high-pressure, large-strain constitutive model for this material. The basic components of the model are constructed in such a way that the model is suitable for direct incorporation into standard commercial transient non-linear dynamics finite-element based software packages like ANSYS/Autodyn [ANSYS/Autodyn version 11.0, User documentation, Century Dynamics Inc. a subsidiary of ANSYS Inc.; 2007.] or ABAQUS/Explicit [ABAQUS version 6.7, User documentation, Dessault systems, 2007.]. To validate the material model, a set of finite element analyses of the Edge-on-Impact (EOI) tests is carried out and the results compared with their experimental counterparts obtained in the recent work of Strassburger et al. [Strassburger E, Patel P, McCauley JW, Kovalchick C, Ramesh KT, Templeton DW. High-speed transmission shadowgraphic and dynamic photoelasticity study of stress wave and impact damage propagation in transparent materials and laminates using the edge-on impact method. In: Proceedings of the twenty-third international symposium on ballistics. Spain: April 2007, and Strassburger E, Patel P, McCauley W, Templeton DW. Visualization of wave propagation and impact damage in a polycrystalline transparent ceramic-AlON. In: Proceedings of the twenty-second international symposium on ballistics. Vancouver, Canada: November 2005.]. Overall, a good agreement is found between the computational and the experimental results pertaining to: (a) the front-shapes and propagation velocities of the longitudinal and transverse waves generated in the target during impact; (b) the front-shapes and propagation velocities of the “coherent-damage” zone (a zone surrounding the projectile/target contact surface which consists of numerous micron- and sub-micron-size cracks); and (c) the formation of “crack centers”, i.e. isolated cracks nucleated ahead of the advancing coherent-damage zone front. Relatively minor discrepancies between the computational and the experimental results are attributed to the effects of damage-promoting target-fixturing induced stresses and cutting/grinding-induced flaws located along the narrow faces of the target and the surrounding regions. [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
0734743X
Volume :
36
Issue :
3
Database :
Academic Search Index
Journal :
International Journal of Impact Engineering
Publication Type :
Academic Journal
Accession number :
35926574
Full Text :
https://doi.org/10.1016/j.ijimpeng.2008.08.001