Back to Search Start Over

Characteristics of turbulent boundary layers over a rough bed under saw-tooth waves and its application to sediment transport

Authors :
Suntoyo
Tanaka, Hitoshi
Sana, Ahmad
Source :
Coastal Engineering. Dec2008, Vol. 55 Issue 12, p1102-1112. 11p.
Publication Year :
2008

Abstract

Abstract: A large number of studies have been done dealing with sinusoidal wave boundary layers in the past. However, ocean waves often have a strong asymmetric shape especially in shallow water, and net of sediment movement occurs. It is envisaged that bottom shear stress and sediment transport behaviors influenced by the effect of asymmetry are different from those in sinusoidal waves. Characteristics of the turbulent boundary layer under breaking waves (saw-tooth) are investigated and described through both laboratory and numerical experiments. A new calculation method for bottom shear stress based on velocity and acceleration terms, theoretical phase difference, φ and the acceleration coefficient, a c expressing the wave skew-ness effect for saw-tooth waves is proposed. The acceleration coefficient was determined empirically from both experimental and baseline k–ω model results. The new calculation has shown better agreement with the experimental data along a wave cycle for all saw-tooth wave cases compared by other existing methods. It was further applied into sediment transport rate calculation induced by skew waves. Sediment transport rate was formulated by using the existing sheet flow sediment transport rate data under skew waves by Watanabe and Sato [Watanabe, A. and Sato, S., 2004. A sheet-flow transport rate formula for asymmetric, forward-leaning waves and currents. Proc. of 29th ICCE, ASCE, pp. 1703–1714.]. Moreover, the characteristics of the net sediment transport were also examined and a good agreement between the proposed method and experimental data has been found. [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
03783839
Volume :
55
Issue :
12
Database :
Academic Search Index
Journal :
Coastal Engineering
Publication Type :
Academic Journal
Accession number :
35504616
Full Text :
https://doi.org/10.1016/j.coastaleng.2008.04.007