Back to Search
Start Over
Loop group decompositions in almost split real forms and applications to soliton theory and geometry
- Source :
-
Journal of Geometry & Physics . Dec2008, Vol. 58 Issue 12, p1792-1800. 9p. - Publication Year :
- 2008
-
Abstract
- Abstract: We prove a global Birkhoff decomposition for almost split real forms of loop groups, when an underlying finite dimensional Lie group is compact. Among applications, this shows that the dressing action–by the whole subgroup of loops which extend holomorphically to the exterior disc–on the -hierarchy of the ZS-AKNS systems, on curved flats and on various other integrable systems, is global for compact cases. It also implies a global infinite dimensional Weierstrass-type representation for Lorentzian harmonic maps ( wave maps) from surfaces into compact symmetric spaces. An “Iwasawa-type” decomposition of the same type of real form, with respect to a fixed point subgroup of an involution of the second kind, is also proved, and an application given. [Copyright &y& Elsevier]
Details
- Language :
- English
- ISSN :
- 03930440
- Volume :
- 58
- Issue :
- 12
- Database :
- Academic Search Index
- Journal :
- Journal of Geometry & Physics
- Publication Type :
- Academic Journal
- Accession number :
- 35203685
- Full Text :
- https://doi.org/10.1016/j.geomphys.2008.09.003