Back to Search Start Over

Methods for determining infrasound phase velocity direction with an array of line sensors.

Authors :
Walker, Kristoffer T.
Zumberge, Mark A.
Hedlin, Michael A. H.
Shearer, Peter M.
Source :
Journal of the Acoustical Society of America. Oct2008, Vol. 124 Issue 4, p2090-2099. 10p. 7 Diagrams, 1 Chart, 6 Graphs.
Publication Year :
2008

Abstract

Infrasound arrays typically consist of several microbarometers separated by distances that provide predictable signal time separations, forming the basis for processing techniques that estimate the phase velocity direction. The directional resolution depends on the noise level and is proportional to the number of these point sensors; additional sensors help attenuate noise and improve direction resolution. An alternative approach is to form an array of directional line sensors, each of which emulates a line of many microphones that instantaneously integrate pressure change. The instrument response is a function of the orientation of the line with respect to the signal wavefront. Real data recorded at the Piñon Flat Observatory in southern California and synthetic data show that this spectral property can be exploited with multiple line sensors to determine the phase velocity direction with a precision comparable to a larger aperture array of microbarometers. Three types of instrument-response-dependent beamforming and an array deconvolution technique are evaluated. The results imply that an array of five radial line sensors, with equal azimuthal separation and an aperture that depends on the frequency band of interest, provides directional resolution while requiring less space compared to an equally effective array of five microbarometers with rosette wind filters. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00014966
Volume :
124
Issue :
4
Database :
Academic Search Index
Journal :
Journal of the Acoustical Society of America
Publication Type :
Academic Journal
Accession number :
34772079
Full Text :
https://doi.org/10.1121/1.2968675