Back to Search Start Over

Greedy rule generation from discrete data and its use in neural network rule extraction

Authors :
Odajima, Koichi
Hayashi, Yoichi
Tianxia, Gong
Setiono, Rudy
Source :
Neural Networks. Sep2008, Vol. 21 Issue 7, p1020-1028. 9p.
Publication Year :
2008

Abstract

Abstract: This paper proposes a GRG (Greedy Rule Generation) algorithm, a new method for generating classification rules from a data set with discrete attributes. The algorithm is “greedy” in the sense that at every iteration, it searches for the best rule to generate. The criteria for the best rule include the number of samples and the size of subspaces that it covers, as well as the number of attributes in the rule. This method is employed for extracting rules from neural networks that have been trained and pruned for solving classification problems. The classification rules are extracted from the neural networks using the standard decompositional approach. Neural networks with one hidden layer are trained and the proposed GRG algorithm is applied to their discretized hidden unit activation values. Our experimental results show that neural network rule extraction with the GRG method produces rule sets that are accurate and concise. Application of GRG directly on three medical data sets with discrete attributes also demonstrates its effectiveness for rule generation. [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
08936080
Volume :
21
Issue :
7
Database :
Academic Search Index
Journal :
Neural Networks
Publication Type :
Academic Journal
Accession number :
34296906
Full Text :
https://doi.org/10.1016/j.neunet.2008.01.003