Back to Search Start Over

Computing inversion pair cardinality through partition-based sorting.

Authors :
Subramani, K.
Source :
Computing. Oct2008, Vol. 83 Issue 1, p41-54. 14p. 4 Charts.
Publication Year :
2008

Abstract

In this paper, we introduce a new randomized, partition-based algorithm for the problem of computing the number of inversion pairs in an unsorted array of n numbers. The algorithm runs in expected time O( n · log n) and uses O( n) extra space. The expected time analysis of the new algorithm is different from the analyses existing in the literature, in that it explicitly uses inversion pairs. The problem of determining the inversion pair cardinality of an array finds applications in a number of design domains, including but not limited to real-time scheduling and operations research. At the heart of our algorithm is a new inversion pair conserving partition procedure that is different from existing partition procedures such as Hoare-partition and Lomuto-partition. Although the algorithm is not fully adaptive, we believe that it is the first step towards the design of an adaptive, partition-based sorting algorithm whose running time is proportional to the number of inversion pairs in the input. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0010485X
Volume :
83
Issue :
1
Database :
Academic Search Index
Journal :
Computing
Publication Type :
Academic Journal
Accession number :
34204792
Full Text :
https://doi.org/10.1007/s00607-008-0011-x