Back to Search Start Over

Genetic approaches identify adult pituitary stem cells.

Authors :
Gleiberman, Anatoli S.
Michurina, Tatyana
Encinas, Juan M.
Roig, Jose L.
Krasnov, Peter
Balordi, Francesca
Fishell, Gord
Rosenfeld, Michael G.
Enikolopov, Grigori
Source :
Proceedings of the National Academy of Sciences of the United States of America. 4/29/2008, Vol. 105 Issue 17, p6332-6337. 6p. 4 Color Photographs, 2 Black and White Photographs, 1 Diagram, 1 Graph.
Publication Year :
2008

Abstract

Adult tissues undergo continuous cell turnover in response to stress, damage, or physiological demand. New differentiated cells are generated from dedicated or facultative stem cells or from self-renewing differentiated cells. Here we describe a different stem cell strategy for tissue maintenance, distinct from that observed for dedicated or facultative stem cells. We report the presence of nestin-expressing adult stem cells in the perilumenal region of the mature anterior pituitary and, using genetic inducible fate mapping, demonstrate that they serve to generate subsets of all six terminally differentiated endocrine cell types of the pituitary gland. These stem cells, while not playing a significant role in organogenesis, undergo postnatal expansion and start producing differentiated progeny, which colonize the organ that initially entirely consisted of differentiated cells derived from embryonic precursors. This generates a mosaic organ with two phenotypically similar subsets of endocrine cells that have different origins and different life histories. These parallel but distinct lineages of differentiated cells in the gland may help the maturing organism adapt to changes in the metabolic regulatory landscape. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00278424
Volume :
105
Issue :
17
Database :
Academic Search Index
Journal :
Proceedings of the National Academy of Sciences of the United States of America
Publication Type :
Academic Journal
Accession number :
31975110
Full Text :
https://doi.org/10.1073/pnas.0801644105