Back to Search Start Over

Wastewater modification processes assessment in a stabilization reservoir.

Authors :
Mannina, G.
Mancini, G.
Torregrossa, M.
Viviani, G.
Source :
Water Science & Technology. 2008, Vol. 57 Issue 7, p1037-1045. 9p. 1 Chart, 4 Graphs.
Publication Year :
2008

Abstract

A semi-empirical mechanistic model able to simulate the dynamics of a stabilization reservoir was developed incorporating both settling of particulate components and chemical/biological processes. Several factors affecting the reservoir effluent quality were taken into account: hydraulics and hydrology, solar radiation, atmospheric reaeration, algae, zooplankton, organic matter, pathogen bacteria, and sediment-water interaction. The model quantifies the specific influence of each factor on effluent quality, evaluating the correlation between the different considered factors. State variables included in the model were: algae, dissolved oxygen, organic matter, zooplankton and indicator bacteria. The model was transferred into a computational code in order to provide a useful and versatile tool for water resource planning management issues. The model was verified by comparing simulated results with full-scale data collected from a small reservoir (Sicily, IT) filled with partially treated wastewater. The reservoir has a volume of 11,000m³, a maximum depth of 6.3m and a mean depth of about 5m. The monitoring period lasted four months during which the reservoir operated in different hydraulics conditions: as a standard batch reactor and as a continuous flow reactor. The model was able to reproduce the behaviour of the principal simulated parameters thus representing a potential tool for the management and performance optimization of these peculiar storage/treatment systems. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02731223
Volume :
57
Issue :
7
Database :
Academic Search Index
Journal :
Water Science & Technology
Publication Type :
Academic Journal
Accession number :
31929411
Full Text :
https://doi.org/10.2166/wst.2008.203