Back to Search
Start Over
Medical image retrieval with probabilistic multi-class support vector machine classifiers and adaptive similarity fusion
- Source :
-
Computerized Medical Imaging & Graphics . Mar2008, Vol. 32 Issue 2, p95-108. 14p. - Publication Year :
- 2008
-
Abstract
- Abstract: We present a content-based image retrieval framework for diverse collections of medical images of different modalities, anatomical regions, acquisition views, and biological systems. For the image representation, the probabilistic output from multi-class support vector machines (SVMs) with low-level features as inputs are represented as a vector of confidence or membership scores of pre-defined image categories. The outputs are combined for feature-level fusion and retrieval based on the combination rules that are derived by following Bayes’ theorem. We also propose an adaptive similarity fusion approach based on a linear combination of individual feature level similarities. The feature weights are calculated by considering both the precision and the rank order information of top retrieved relevant images as predicted by SVMs. The weights are dynamically updated by the system for each individual search to produce effective results. The experiments and analysis of the results are based on a diverse medical image collection of 11,000 images of 116 categories. The performances of the classification and retrieval algorithms are evaluated both in terms of error rate and precision–recall. Our results demonstrate the effectiveness of the proposed framework as compared to the commonly used approaches based on low-level feature descriptors. [Copyright &y& Elsevier]
Details
- Language :
- English
- ISSN :
- 08956111
- Volume :
- 32
- Issue :
- 2
- Database :
- Academic Search Index
- Journal :
- Computerized Medical Imaging & Graphics
- Publication Type :
- Academic Journal
- Accession number :
- 28151464
- Full Text :
- https://doi.org/10.1016/j.compmedimag.2007.10.001