Back to Search Start Over

Highly Pathogenic Avian Influenza H5N1 Viruses Elicit an Attenuated Type I Interferon Response in Polarized Human Bronchial Epithelial Cells.

Authors :
Hui Zeng
Goldsmith, Cynthia
Thawatsupha, Pranee
Chittaganpitch, Malinee
Waicharoen, Sunthareeya
Zaki, Sherif
Tumpey, Terrence M.
Katz, Jacqueline M.
Source :
Journal of Virology. Nov2007, Vol. 81 Issue 22, p23-23. 1p.
Publication Year :
2007

Abstract

The unparalleled spread of highly pathogenic avian influenza A (HPAI) H5N1 viruses has resulted in devastating outbreaks in domestic poultry and sporadic human infections with a high fatality rate. To better understand the mechanism(s) of H5N1 virus pathogenesis and host responses in humans, we utilized a polarized human bronchial epithelial cell model that expresses both avian alpha-2,3- and human alpha-2,6-linked sialic acid receptors on the apical surface and supports productive replication of both H5N1 and H3N2 viruses. Using this model, we compared the abilities of selected 2004 HPAI H5N1 viruses isolated from humans and a recent human H3N2 virus to trigger the type I interferon (IFN) response. H5N1 viruses elicited significantly less IFN regulatory factor 3 (IRF3) nuclear translocation, as well as delayed and reduced production of IFN-β compared with the H3N2 virus. Furthermore, phosphorylation of Stat2 and induction of IFN-stimulated genes (ISGs), such as MX1, ISG15, IRF7, and retinoic acid-inducible gene I, were substantially delayed and reduced in cells infected with H5N1 viruses. We also observed that the highly virulent H5N1 virus replicated more efficiently and induced a weaker IFN response than the H5N1 virus that exhibited low virulence in mammals in an earlier study. Our data suggest that the H5N1 viruses tested, especially the virus with the high-pathogenicity phenotype, possess greater capability to attenuate the type I IFN response than the human H3N2 virus. The attenuation of this critical host innate immune defense may contribute to the virulence of H5N1 viruses observed in humans. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0022538X
Volume :
81
Issue :
22
Database :
Academic Search Index
Journal :
Journal of Virology
Publication Type :
Academic Journal
Accession number :
27732616
Full Text :
https://doi.org/10.1128/JVI.01134-07