Back to Search Start Over

Penetration analysis of a projectile in ceramic composite armor

Authors :
Shokrieh, M.M.
Javadpour, G.H.
Source :
Composite Structures. Jan2008, Vol. 82 Issue 2, p269-276. 8p.
Publication Year :
2008

Abstract

Abstract: In this research an armor material with constant thickness has been studied. The armor consists of two layers: one is a boron carbide ceramic and the other is Kevlar 49 fiber composite material. By using Ansys/Lsdyna software, the ballistic limit velocity of this armor has been obtained and the Heterington equation (optimum thickness of layers) has been verified for constant thickness of the armor. In this research, mechanical properties of Kevlar 49 under different strain rates are utilized and showed that consideration of the strain rate is very important for the simulation of penetration process. Results from the model have confirmed the validity of the Chocron–Galvez analytical model. Moreover, the projectile velocity prediction, especially at high velocity, shows a good agreement with numerical simulations. Finally, normal and oblique impacts of projectile to armor have been simulated and compared. The results show that the ballistic limit velocity of armor increases under oblique impact conditions. [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
02638223
Volume :
82
Issue :
2
Database :
Academic Search Index
Journal :
Composite Structures
Publication Type :
Academic Journal
Accession number :
26709303
Full Text :
https://doi.org/10.1016/j.compstruct.2007.01.023