Back to Search Start Over

Liver-specific Knockdown of JNK1 Up-regulates Proliferator-activated Receptor γ Coactivator 1β and Increases Plasma Triglyceride despite Reduced Glucose and Insulin Levels in Diet-induced Obese Mice.

Authors :
Ruojing Yang
Wilcox, Denise M.
Haasch, Deanna L.
Jung, Paul M.
Nguyen, Phong T.
Voorbach, Martin J.
Doktor, Stella
Brodjian, Sevan
Bush, Eugene N.
Lin, Emily
Jacobson, Peer B.
Collins, Christine A.
Landschulz, Katherine T.
Trevillyan, James M.
Rondinone, Cristina M.
Surowy, Terry K.
Source :
Journal of Biological Chemistry. 8/3/2007, Vol. 282 Issue 31, p22765-22774. 10p. 1 Diagram, 1 Chart, 5 Graphs.
Publication Year :
2007

Abstract

The c-Jun N-terminal kinases (JNKs) have been implicated in the development of insulin resistance, diabetes, and obesity. Genetic disruption of JNK1, but not JNK2, improves insulin sensitivity in diet-induced obese (DIO) mice. We applied RNA interference to investigate the specific role of hepatic JNK1 in contributing to insulin resistance in DIO mice. Adenovirus-mediated delivery of JNK1 short-hairpin RNA (Ad-sh)NK1) resulted in almost complete knockdown of hepatic JNK1 protein without affecting JNK1 protein in other tissues. Liver-specific knockdown of JNK1 resulted in significant reductions in circulating insulin and glucose levels, by 57 and 16%, respectively. At the molecular level, JNK1 knockdown mice had sustained and significant increase of hepatic Akt phosphorylation. Furthermore, knockdown of JNK1 enhanced insulin signaling in vitro. Unexpectedly, plasma triglyceride levels were robustly elevated upon hepatic JNK1 knockdown. Concomitantly, expression of proliferator-activated receptor γ coactivator 1β, glucokinase, and microsomal triacylglycerol transfer protein was increased. Further gene expression analysis demonstrated that knockdown of JNK1 up-regulates the hepatic expression of clusters of genes in glycolysis and several genes in triglyceride synthesis pathways. Our results demonstrate that liver-specific knockdown of JNK1 lowers circulating glucose and insulin levels but increases triglyceride levels in DIO mice. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219258
Volume :
282
Issue :
31
Database :
Academic Search Index
Journal :
Journal of Biological Chemistry
Publication Type :
Academic Journal
Accession number :
26281283
Full Text :
https://doi.org/10.1074/jbc.M700790200