Back to Search
Start Over
Human evolutionary model: A new approach to optimization
- Source :
-
Information Sciences . May2007, Vol. 177 Issue 10, p2075-2098. 24p. - Publication Year :
- 2007
-
Abstract
- Abstract: The aim of this paper is to propose the Human Evolutionary Model (HEM) as a novel computational method for solving search and optimization problems with single or multiple objectives. HEM is an intelligent evolutionary optimization method that uses consensus knowledge from experts with the aim of inferring the most suitable parameters to achieve the evolution in an intelligent way. HEM is able to handle experts’ knowledge disagreements by the use of a novel concept called Mediative Fuzzy Logic (MFL). The effectiveness of this computational method is demonstrated through several experiments that were performed using classical test functions as well as composite test functions. We are comparing our results against the results obtained with the Genetic Algorithm of the Matlab’s Toolbox, Evolution Strategy with Covariance Matrix Adaptation (CMA-ES), Particle Swarm Optimizer (PSO), Cooperative PSO (CPSO), G3 model with PCX crossover (G3-PCX), Differential Evolution (DE), and Comprehensive Learning PSO (CLPSO). The results obtained using HEM outperforms the results obtained using the abovementioned optimization methods. [Copyright &y& Elsevier]
- Subjects :
- *MATHEMATICAL optimization
*ALGORITHMS
*FUZZY systems
*MATHEMATICAL logic
Subjects
Details
- Language :
- English
- ISSN :
- 00200255
- Volume :
- 177
- Issue :
- 10
- Database :
- Academic Search Index
- Journal :
- Information Sciences
- Publication Type :
- Periodical
- Accession number :
- 24302610
- Full Text :
- https://doi.org/10.1016/j.ins.2006.09.012