Back to Search Start Over

The Lattice of Full Subsemigroups of an Inverse Semigroup.

Authors :
Zhenji Tian
Zongben Xu
Shevrin, Lev N.
Source :
Semigroup Forum. Nov2006, Vol. 73 Issue 3, p457-469. 13p.
Publication Year :
2006

Abstract

In this paper, we consider the lattice Subf S of full subsemigroups of an inverse semigroup S. Our first main theorem states that for any inverse semigroup S, Subf S is a subdirect product of the lattices of full subsemigroups of its principal factors, so that Subf S is distributive [meet semidistributive, join semidistributive, modular, semimodular] if and only if the lattice of full subsemigroups of each principal factor is. To examine such inverse semigroups, therefore, we need essentially only consider those which are 0-simple. For a 0-simple inverse semigroup S (not a group with zero), we show that in fact each of modularity, meet semidistributivity and join semidistributivity of Subf S is equivalent to distributivity of S, that is, S is the combinatorial Brandt semigroup with exactly two nonzero idempotents and two nonidempotents. About semimodularity, however, we concentrate only on the completely 0-simple case, that is, Brandt semigroups. For a Brandt semigroup S (not a group with zero), semimodularity of Subf S is equivalent to distributivity of Subf S. Finally, we characterize an inverse semigroup S for which Subf S is a chain. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00371912
Volume :
73
Issue :
3
Database :
Academic Search Index
Journal :
Semigroup Forum
Publication Type :
Academic Journal
Accession number :
24281854
Full Text :
https://doi.org/10.1007/s00233-006-0626-1