Back to Search Start Over

Elevated CO2 and O3 Alter Soil Nitrogen Transformations beneath Trembling Aspen, Paper Birch, and Sugar Maple.

Authors :
Holmes, William
Zak, Donald
Pregitzer, Kurt
King, John
Source :
Ecosystems. Dec2006, Vol. 9 Issue 8, p1354-1363. 10p. 5 Charts.
Publication Year :
2006

Abstract

Nitrogen cycling in northern temperate forest ecosystems could change under increasing atmospheric CO2 and tropospheric O3 as a result of quantitative and qualitative changes in plant litter production. At the Aspen Free Air CO2–O3 Enrichment (FACE) experiment, we previously found that greater substrate inputs to soil under elevated CO2 did not alter gross N transformation rates in the first 3 years of the experiment. We hypothesized that greater litter production under elevated CO2 would eventually cause greater gross N transformation rates and that CO2 effects would be nullified by elevated O3. Following our original study, we continued measurement of gross N transformation rates for an additional four years. From 1999 to 2003, gross N mineralization doubled, N immobilization increased 4-fold, but changes in microbial biomass N and soil total N were not detected. We observed year-to-year variation in N transformation rates, which peaked during a period of foliar insect damage. Elevated CO2 caused equivalent increases in gross rates of N mineralization (+34%) and NH immobilization (+36%). These results indicate greater rates of N turnover under elevated CO2, but do not indicate a negative feedback between elevated CO2 and soil N availability. Elevated O3 decreased gross N mineralization (−16%) and had no effect on NH immobilization, indicating reduced N availability under elevated O3. The effects of CO2 and O3 on N mineralization rates were mainly related to changes in litter production, whereas effects on N immobilization were likely influenced by changes in litter chemistry and production. Our findings also indicate that concomitant increases in atmospheric CO2 and O3 could lead to a negative feedback on N availability. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14329840
Volume :
9
Issue :
8
Database :
Academic Search Index
Journal :
Ecosystems
Publication Type :
Academic Journal
Accession number :
23764832
Full Text :
https://doi.org/10.1007/s10021-006-0163-5