Back to Search Start Over

Dynamic simulation of a peristaltic micropump considering coupled fluid flow and structural motion.

Authors :
Qiao Lin
Bozhi Yang
Jun Xie
Chong Tai
Source :
Journal of Micromechanics & Microengineering. Feb2007, Vol. 17 Issue 2, p220-228. 9p.
Publication Year :
2007

Abstract

This paper presents lumped-parameter simulation of dynamic characteristics of peristaltic micropumps. The pump consists of three pumping cells connected in series, each of which is equipped with a compliant diaphragm that is electrostatically actuated in a peristaltic sequence to mobilize the fluid. Diaphragm motion in each pumping cell is first represented by an effective spring subjected to hydrodynamic and electrostatic forces. These cell representations are then used to construct a system-level model for the entire pump, which accounts for both cell- and pump-level interactions of fluid flow and diaphragm vibration. As the model is based on first principles, it can be evaluated directly from the device's geometry, material properties and operating parameters without using any experimentally identified parameters. Applied to an existing pump, the model correctly predicts trends observed in experiments. The model is then used to perform a systematic analysis of the impact of geometry, materials and pump loading on device performance, demonstrating its utility as an efficient tool for peristaltic micropump design. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
13616439
Volume :
17
Issue :
2
Database :
Academic Search Index
Journal :
Journal of Micromechanics & Microengineering
Publication Type :
Academic Journal
Accession number :
23637197
Full Text :
https://doi.org/10.1088/0960-1317/17/2/006