Back to Search Start Over

Approaches to multiplicity issues in complex research in microarray analysis.

Authors :
Yekutieli, Daniel
Reiner-Benaim, Anat
Benjamini, Yoav
Elmer, Gregory I.
Kafkafi, Neri
Letwin, Noah E.
Lee, Norman H.
Source :
Statistica Neerlandica. Nov2006, Vol. 60 Issue 4, p414-437. 24p. 2 Diagrams, 3 Graphs.
Publication Year :
2006

Abstract

The multiplicity problem is evident in the simplest form of statistical analysis of gene expression data – the identification of differentially expressed genes. In more complex analysis, the problem is compounded by the multiplicity of hypotheses per gene. Thus, in some cases, it may be necessary to consider testing millions of hypotheses. We present three general approaches for addressing multiplicity in large research problems. (a) Use the scalability of false discovery rate (FDR) controlling procedures; (b) apply FDR-controlling procedures to a selected subset of hypotheses; (c) apply hierarchical FDR-controlling procedures. We also offer a general framework for ensuring reproducible results in complex research, where a researcher faces more than just one large research problem. We demonstrate these approaches by analyzing the results of a complex experiment involving the study of gene expression levels in different brain regions across multiple mouse strains. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00390402
Volume :
60
Issue :
4
Database :
Academic Search Index
Journal :
Statistica Neerlandica
Publication Type :
Academic Journal
Accession number :
22674759
Full Text :
https://doi.org/10.1111/j.1467-9574.2006.00343.x