Back to Search Start Over

Multistep Solution-Mediated Formation of AuCuSn2: Mechanistic Insights for the Guided Design of Intermetallic Solid-State Materials and Complex Multimetal Nanocrystals.

Authors :
Leonard, Brian M.
Schaak, Raymond E.
Source :
Journal of the American Chemical Society. 9/6/2006, Vol. 128 Issue 35, p11475-11482. 8p. 6 Graphs.
Publication Year :
2006

Abstract

Understanding how solids form is a challenging task, and few strategies allow for the elucidation of reaction pathways that are useful for designing new solids. Here, we describe an unusual multistep reaction pathway that leads to the formation of AuCuSn2, a new ternary intermetallic compound that was discovered as nanocrystals using a low-temperature solution route. The formation of AuCuSn2 using a modified polyol process occurs through a multistep pathway that was elucidated by taking aliquots throughout the course of the reaction and studying the products using a variety of techniques. The reaction proceeds through four distinct steps: (a) formation of Au nanoparticles at or near room temperature, mediated by a galvanic reaction between Au3+ and Sn2+ (forming Au0 and Sn4+, precipitated as SnO2 that forms a shell around the nanoparticles), (b) formation of NiAs-type AuSn nanoparticles, along with Cu and Sn, upon addition of NaBH4, (c) aggregation and thermal interdiffusion to form AuCuxSny alloy nanoparticles, and (d) nucleation of intermetallic AuCuSn2, which has an ordered NiAs-derived structure. The proposed mechanism was tested by starting the reaction with the AuSn intermediate. AuSn nanoparticles were synthesized separately and reacted with Cu and Sn nanoparticles, and ordered AuCuSn2 formed as expected. Elucidation of this reaction pathway has important implications for guiding the design of new intermetallic solids, as well as for controlling the synthesis of complex multimetal nanocrystals. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00027863
Volume :
128
Issue :
35
Database :
Academic Search Index
Journal :
Journal of the American Chemical Society
Publication Type :
Academic Journal
Accession number :
22312701
Full Text :
https://doi.org/10.1021/ja062475h