Back to Search Start Over

Epoxyeicosatrienoic acids in cardioprotection: ischemic versus reperfusion injury.

Authors :
Nithipatikom, Kasem
Moore, Jeannine M.
Isbell, Marilyn A.
Falck, John R.
Gross, Garrett J.
Source :
American Journal of Physiology: Heart & Circulatory Physiology. Aug2006, Vol. 291 Issue 2, pH537-H542. 6p. 1 Diagram, 2 Charts, 3 Graphs.
Publication Year :
2006

Abstract

Cytochrome P-450 (CYP) epoxygenases and their arachidonic acid (AA) metabolites, the epoxyeicosatrienoic acids (EETs), have been shown to produce increases in postischemic function via ATP-sensitive potassium channels (KATP); however, the direct effects of EETs on infarct size (IS) have not been investigated. We demonstrate that two major regioisomers of CYP epoxygenases, 11,12-EET and 14,15-EET, significantly reduced IS in dogs compared to control (22.1 ± 1.8%), whether administered 15 min before 60 min of coronary occlusion (6.4 ± 1.9%, 11,12-EET; and 8.4 ± 2.4%, 14.15-EET) or 5 min before 3 h of reperfusion (8.8 ± 2.1%, 11,12-EET; and 9.7 ± 1.4%, 14,15-EET). Pretreatment with the epoxide hydrolase metabolite of 14,15-EET, 14,15-dihydroxyeicosatrienoic acid, had no effect. The protective effect of 11,12-EET was abolished (24.3 ± 4.6%) by the KATP channel antagonist glibenclamide. Furthermore, one 5-min period of ischemic preconditioning (IPC) reduced IS to a similar extent (8.7 ± 2.8%) to that observed with the EETs. The selective CYP epoxygenase inhibitor, N-methylsulfonyl-6-(2-propargyloxyphenyl)hexanamide (MS-PPOH), did not block the effect of IPC. However, administration of MS-PPOH concomitantly with N-methylsulfonyl-12, 12-dibromododec-11-enanide (DDMS), a selective inhibitor of endogenous CYP ω-hydroxylases, abolished the reduction in myocardial IS expressed as a percentage of area at risk (IS/AAR) produced by DDMS (4.6 ± 1.2%, DDMS; and 22.2 ± 3.4%, MS-PPOH + DDMS). These data suggest that 11,12-EET and 14,15-EET produce reductions in IS/AAR primarily at reperfusion. Conversely, inhibition of CYP epoxygenases and endogenous EET formation by MS-PPOH, in the presence of the CYP ω-hydroxylase inhibitor DDMS blocked cardioprotection, which suggests that endogenous EETs are important for the beneficial effects observed when CYP ω-hydroxylases are inhibited. Finally, the protective effects of EETs are mediated by cardiac KATP channels. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03636135
Volume :
291
Issue :
2
Database :
Academic Search Index
Journal :
American Journal of Physiology: Heart & Circulatory Physiology
Publication Type :
Academic Journal
Accession number :
21969957
Full Text :
https://doi.org/10.1152/ajpheart.00071.2006