Back to Search Start Over

LTL over integer periodicity constraints

Authors :
Demri, Stéphane
Source :
Theoretical Computer Science. Aug2006, Vol. 360 Issue 1-3, p96-123. 28p.
Publication Year :
2006

Abstract

Abstract: Periodicity constraints are used in many logical formalisms, in fragments of Presburger LTL, in calendar logics, and in logics for access control, to quote a few examples. In the paper, we introduce the logic , an extension of Linear-Time Temporal Logic LTL with past-time operators whose atomic formulae are defined from a first-order constraint language dealing with periodicity. Although the underlying constraint language is a fragment of Presburger arithmetic shown to admit a PSPACE-complete satisfiability problem, we establish that model-checking and satisfiability problems remain in PSPACE as plain LTL (full Presburger LTL is known to be highly undecidable). This is particularly interesting for dealing with periodicity constraints since the language of has a language more concise than existing languages and the temporalization of our first-order language of periodicity constraints has the same worst case complexity as the underlying constraint language. Finally, we show examples of introduction the quantification in the logical language that provide to , EXPSPACE-complete problems. As another application, we establish that the equivalence problem for extended single-string automata, known to express the equality of time granularities, is PSPACE-complete by designing a reduction from QBF and by using our results for . [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
03043975
Volume :
360
Issue :
1-3
Database :
Academic Search Index
Journal :
Theoretical Computer Science
Publication Type :
Academic Journal
Accession number :
21830350
Full Text :
https://doi.org/10.1016/j.tcs.2006.02.019