Back to Search Start Over

Photocatalytic oxidation and removal of arsenite from water using slag-iron oxide-TiO2 adsorbent

Authors :
Zhang, Fu-Shen
Itoh, Hideaki
Source :
Chemosphere. Sep2006, Vol. 65 Issue 1, p125-131. 7p.
Publication Year :
2006

Abstract

Abstract: Photocatalytic oxidation of arsenite and simultaneous removal of the generated arsenate from aqueous solution were investigated. The whole process was performed using an adsorbent developed by loading iron oxide and TiO2 on municipal solid waste melted slag. The loading was carried out through chemical reactions and high-temperature process. In the removal process, arsenite was first oxidized to arsenate, and then was removed by adsorption. The oxidation of arsenite was rapid, but the adsorption of the generated arsenate was slow. A concentration of 100mgl−1 arsenite could be entirely oxidized to arsenate within 3h in the presence of the adsorbent and under UV-light irradiation, but the equilibrium adsorption of the generated arsenate needed 10h. Arsenite could also be oxidized to arsenate only by UV-light, but the reaction rate was approximately 1/3 of that of the photocatalyzed reaction. Both acidic and alkaline conditions were favorable for the oxidation reaction, and the optimum pH value for the oxidation and adsorption was proposed to be around 3. To oxidize and remove original 20mgl−1 or 50mgl−1 arsenite from aqueous solution, the necessary adsorbent amount was 2gl−1 or 5gl−1, respectively. Furthermore, the surface properties of the adsorbent were examined and the oxidation mechanism of arsenite was discussed. It is believed that the adsorbent developed in this study is efficient, cost-effective and environment-friendly for application in arsenic-contaminated wastewater treatment. [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
00456535
Volume :
65
Issue :
1
Database :
Academic Search Index
Journal :
Chemosphere
Publication Type :
Academic Journal
Accession number :
21749727
Full Text :
https://doi.org/10.1016/j.chemosphere.2006.02.027