Back to Search Start Over

QUANTUM MECHANICS AS A MEASUREMENT THEORY ON BICONFORMAL SPACE.

Authors :
ANDERSON, LARA B.
WHEELER, JAMES T.
Source :
International Journal of Geometric Methods in Modern Physics. Apr2006, Vol. 3 Issue 2, p315-340. 26p.
Publication Year :
2006

Abstract

Biconformal spaces contain the essential elements of quantum mechanics, making the independent imposition of quantization unnecessary. Based on three postulates characterizing motion and measurement in biconformal geometry, we derive standard quantum mechanics, and show how the need for probability amplitudes arises from the use of a standard of measurement. Additionally, we show that a postulate for unique, classical motion yields Hamiltonian dynamics with no measurable size changes, while a postulate for probabilistic evolution leads to physical dilatations manifested as measurable phase changes. Our results lead to the Feynman path integral formulation, from which follows the Schrödinger equation. We discuss the Heisenberg uncertainty relation and fundamental canonical commutation relations. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02198878
Volume :
3
Issue :
2
Database :
Academic Search Index
Journal :
International Journal of Geometric Methods in Modern Physics
Publication Type :
Academic Journal
Accession number :
20060880
Full Text :
https://doi.org/10.1142/S0219887806001168