Back to Search
Start Over
Brittle fracture dynamics with arbitrary paths III. The branching instability under general loading
- Source :
-
Journal of the Mechanics & Physics of Solids . Jan2005, Vol. 53 Issue 1, p227-248. 22p. - Publication Year :
- 2005
-
Abstract
- The dynamic propagation of a bifurcated crack under arbitrary loading is studied. Under plane loading configurations, it is shown that the model problem of the determination of the dynamic stress intensity factors after branching is similar to the anti-plane crack branching problem. By analogy with the exact results of the mode III case, the energy release rate immediately after branching under plane situations is expected to be maximized when the branches start to propagate quasi-statically. Therefore, the branching of a single propagating crack under mode I loading should be energetically possible when its speed exceeds a threshold value. The critical velocity for branching of the initial single crack depends only weakly on the criterion applied for selecting the paths followed by the branches. However, the principle of local symmetry imposes a branching angle which is larger than the one given by the maximum energy release rate criterion. Finally, it is shown that an increasing fracture energy with the velocity results in a decrease in the critical velocity at which branching is energetically possible. [Copyright &y& Elsevier]
- Subjects :
- *COMPLEX variables
*ANALYTIC functions
*SPEED
*STRESS waves
Subjects
Details
- Language :
- English
- ISSN :
- 00225096
- Volume :
- 53
- Issue :
- 1
- Database :
- Academic Search Index
- Journal :
- Journal of the Mechanics & Physics of Solids
- Publication Type :
- Periodical
- Accession number :
- 19274447
- Full Text :
- https://doi.org/10.1016/j.jmps.2004.06.001