Back to Search Start Over

Radiometric Performance Evaluation of ASTER VNIR, SWIR, and TIR.

Authors :
Arai, Kohei
Tonooka, Hideyuki
Source :
IEEE Transactions on Geoscience & Remote Sensing. Dec2005, Vol. 43 Issue 12, p2725-2732. 8p.
Publication Year :
2005

Abstract

Radiometric performance of the Advanced Spectrometer for Thermal Emission and Reflection Radiometer (ASTER) is characterized by using acquired imagery data. Noise-equivalent reflectance and temperature, sensitivity (gain), bias (offset), and modulation transfer function (MTF) are determined for the visible and near-infrared (VNIR), the shortwave infrared (SWIR), and the thermal infrared (TIR) radiometers that constitute ASTER. The responsivity evaluated from onboard calibration (OBC) and from instrumented scenes show similar trends for the VNIR: the OBC data yield 2.7% to 5.5% a year for the VNIR. The SWIR response changed less than 2% in the 3.5 years following launch. The zero-radiance offsets of most VNIR and SWIR bands have increased about 1/2 digital number per year. The in-orbit noise levels, calculated by the standard deviation of dark (VNIR and SWIR) or ocean (TIR) scenes, show that all bands are within specification. The MTF at Nyquist and 1/2 Nyquist frequencies was determined for all bands using the Moon (VNIR and SWIR) or terrestrial scenes with lines of sharp thermal contrast. In-orbit performance along-track and cross-track is better than prelaunch for the VNIR and SWIR bands in nearly all cases; the TIR effectively meets specification in-orbit. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01962892
Volume :
43
Issue :
12
Database :
Academic Search Index
Journal :
IEEE Transactions on Geoscience & Remote Sensing
Publication Type :
Academic Journal
Accession number :
19118693
Full Text :
https://doi.org/10.1109/TGRS.2005.850392