Back to Search
Start Over
Zeros in Tables of Characters for the Groups S n and A n. II.
- Source :
-
Algebra & Logic . Nov2005, Vol. 44 Issue 6, p357-369. 13p. 2 Graphs. - Publication Year :
- 2005
-
Abstract
- Let P(n) be the set of all partitions of a natural number n. In the representation theory of symmetric groups, for every partition α ∈ P(n), the partition h(α) ∈ P(n) is defined so as to produce a certain set of zeros in the character table for Sn. Previously, the analog f(α) of h(α) was obtained pointing out an extra set of zeros in the table mentioned. Namely, h(α) is greatest (under the lexicographic ordering ≤) of the partitions β of n such that χα(gβ) ≠ 0, and f(α) is greatest of the partitions γ of n that are opposite in sign to h(α) and are such that χα(gγ) ≠ 0, where χα is an irreducible character of Sn, indexed by α, and gβ is an element in the conjugacy class of Sn, indexed by β. For α ∈ P(n), under some natural restrictions, here, we construct new partitions h′(α) and f′(α) of n possessing the following properties. (A) Let α ∈ P(n) and n ⩾ 3. Then h′(α) is identical is sign to h(α), χα(gh′(α)) ≠ 0, but χα(gγ) = 0 for all γ ∈ P(n) such that the sign of γ coincides with one of h(α), and h′(α) < γ < h(α). (B) Let α ∈ P(n), α ≠ α′, and n ⩾ 4. Then f′(α) is identical in sign to f(α), χα(gf′(α)) ≠ 0, but χα(gγ) = 0 for all γ ∈ P(n) such that the sign of γ coincides with one of f(α), and f′(α) < γ < f(α). The results obtained are then applied to study pairs of semiproportional irreducible characters in An. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00025232
- Volume :
- 44
- Issue :
- 6
- Database :
- Academic Search Index
- Journal :
- Algebra & Logic
- Publication Type :
- Academic Journal
- Accession number :
- 18995088
- Full Text :
- https://doi.org/10.1007/s10469-005-0035-7