Back to Search Start Over

Attenuation of a non-parallel beam of gamma radiation by thick shielding—application to the determination of the 235U enrichment with NaI detectors

Authors :
Mortreau, Patricia
Berndt, Reinhard
Source :
Nuclear Instruments & Methods in Physics Research Section A. Sep2005, Vol. 550 Issue 3, p675-690. 16p.
Publication Year :
2005

Abstract

Abstract: The traditional method used to determine the Uranium enrichment by nondestructive analysis is based on the “enrichment meter principle” [1]. It involves measuring the intensity of the 186keV net peak area of 235U in “quasi-infinite” samples. A prominent factor, which affects the peak intensity, is the presence of gamma absorbing material (e.g., container wall, detector cover) between the sample and the detector. Its effect is taken into consideration in a commonly called “wall thickness” correction factor. Often calculated on the basis of approximations, its performance is adequate for small attenuation factors applicable to the case of narrow beams. However these approximations do not lead to precise results when wide non-parallel beams are attenuated through thick container walls. This paper is dedicated to the calculation by numerical integration of the geometrical correction factor (K wtc) which describes the effective mean path length of the radiation through the absorbing layer. This factor was calculated as a function of various measurement parameters (types and dimensions of the detector, of the collimator and of the shielding) for the most commonly used collimator shapes and detectors. Both coherent scattering (Rayleigh) and incoherent scattering (Compton) are taken into account for the calculation of the radiation interaction within the detector. [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
01689002
Volume :
550
Issue :
3
Database :
Academic Search Index
Journal :
Nuclear Instruments & Methods in Physics Research Section A
Publication Type :
Academic Journal
Accession number :
18282746
Full Text :
https://doi.org/10.1016/j.nima.2005.05.057