Back to Search Start Over

Simulation analysis of surgical neck fractures of the humerus related to bone degeneration.

Authors :
Men, Yutao
Wei, Lele
Wang, Yeming
Chen, Wei
Liu, Fulong
Ren, Yucheng
Source :
Computer Methods in Biomechanics & Biomedical Engineering. Jan2025, p1-10. 10p. 7 Illustrations.
Publication Year :
2025

Abstract

AbstractThe most common type of proximal humerus fracture is surgical neck fracture. The purpose of this paper is to study the mechanical mechanism and the effect of bone degeneration on humeral surgical neck fractures. The right humerus finite element models were established based on CT computed tomography. The stress values and crack propagation process under an axial force were obtained. Three indexes (mechanical property, cortical bone thickness of diaphysis and cancellous bone volume fraction) in this article were used to describe bone degeneration. The results showed that the three models group with different index had the same conclusions. The calculation results showed that the higher the bone degeneration level, the shorter the fracture time and the lower the fracture stress. The crack initiated from the medial side of the humerus, then gradually grew toward lateral side along the both sides, and finally broke. The medial crack was flat and single like "a thin line", while the lateral fracture of the humerus was irregular and crushed into fragments. The medial humerus cracks were generated by tensile stress, while the lateral cracks were generated by compressive stress. The thickness of humerus diaphysis might be used as the index of fracture risk due to direct readability from clinical images and quantitative relation of fracture risk. This article would provide reference data for the treatment and prevention of humeral surgical neck fracture. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10255842
Database :
Academic Search Index
Journal :
Computer Methods in Biomechanics & Biomedical Engineering
Publication Type :
Academic Journal
Accession number :
182460655
Full Text :
https://doi.org/10.1080/10255842.2025.2456986