Back to Search
Start Over
Diffusive logistic equation with a non-Lipschitz nonlinear boundary condition arising from coastal fishery harvesting: the resonant case: Diffusive logistic equation: K. Umezu.
- Source :
-
Zeitschrift für Angewandte Mathematik und Physik (ZAMP) . Feb2025, Vol. 76 Issue 1, p1-25. 25p. - Publication Year :
- 2025
-
Abstract
- For bifurcation analysis, we study the positive solution set for a semilinear elliptic equation of the logistic type, equipped with a sublinear boundary condition modeling coastal fishery harvesting. This work is a continuation of the author's previous studies (Umezu in Nonlinear Anal. Real World Appl. 70:103788, 2023, J. Math. Anal. Appl. 534:128134, 2024), where certain results were obtained in a non-resonant case, including the existence, uniqueness, multiplicity, and strong positivity for positive solutions. In this paper, we consider the delicate resonant case and develop a sort of nonstandard bifurcation technique at zero to evaluate the positive solution set depending on a parameter. The nonlinear boundary condition is not right-differentiable at zero. [ABSTRACT FROM AUTHOR]
- Subjects :
- *FISHERIES
*NONLINEAR equations
*MULTIPLICITY (Mathematics)
*MATHEMATICS
*OPTIMISM
Subjects
Details
- Language :
- English
- ISSN :
- 00442275
- Volume :
- 76
- Issue :
- 1
- Database :
- Academic Search Index
- Journal :
- Zeitschrift für Angewandte Mathematik und Physik (ZAMP)
- Publication Type :
- Academic Journal
- Accession number :
- 182303379
- Full Text :
- https://doi.org/10.1007/s00033-024-02409-2