Back to Search Start Over

Diffusive logistic equation with a non-Lipschitz nonlinear boundary condition arising from coastal fishery harvesting: the resonant case: Diffusive logistic equation: K. Umezu.

Authors :
Umezu, Kenichiro
Source :
Zeitschrift für Angewandte Mathematik und Physik (ZAMP). Feb2025, Vol. 76 Issue 1, p1-25. 25p.
Publication Year :
2025

Abstract

For bifurcation analysis, we study the positive solution set for a semilinear elliptic equation of the logistic type, equipped with a sublinear boundary condition modeling coastal fishery harvesting. This work is a continuation of the author's previous studies (Umezu in Nonlinear Anal. Real World Appl. 70:103788, 2023, J. Math. Anal. Appl. 534:128134, 2024), where certain results were obtained in a non-resonant case, including the existence, uniqueness, multiplicity, and strong positivity for positive solutions. In this paper, we consider the delicate resonant case and develop a sort of nonstandard bifurcation technique at zero to evaluate the positive solution set depending on a parameter. The nonlinear boundary condition is not right-differentiable at zero. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00442275
Volume :
76
Issue :
1
Database :
Academic Search Index
Journal :
Zeitschrift für Angewandte Mathematik und Physik (ZAMP)
Publication Type :
Academic Journal
Accession number :
182303379
Full Text :
https://doi.org/10.1007/s00033-024-02409-2