Back to Search
Start Over
Effect of low-frequency neuromuscular electrical stimulation combined with passive cycle ergometry on hemodynamics in healthy adults.
- Source :
-
American Journal of Physiology: Regulatory, Integrative & Comparative Physiology . Jan2025, Vol. 328 Issue 1, pR81-R89. 9p. - Publication Year :
- 2025
-
Abstract
- There have been few studies that have examined hemodynamic responses to low-frequency neuromuscular electrical stimulation (LF-NMES), and the effects of combining passive cycle ergometry are still unclear. The purpose of this study was to examine the effects of a combination of LF-NMES and passive cycle ergometry on hemodynamic responses with a primary focus on the Fick principle in healthy adults. A randomized, crossover trial was conducted to evaluate the responses to three types of supine exercises (LF-NMES alone, LF-NMES with passive cycle ergometry, and voluntary cycle ergometry) adjusted to the same exercise intensity as the oxygen consumption of 14 mL/kg/min in 13 healthy adult men. Blood pressure, heart rate, blood lactate concentration, stroke volume (SV), cardiac output (CO), and left ventricular end-diastolic volume (LVEDV) were measured during each exercise in all subjects. The arterial-venous oxygenation difference (A-V̇ o 2 difference) was calculated based on Fick's equation. LVEDV, SV, and CO were lower, and the A-V̇ o 2 difference and blood lactate concentration were higher in LF-NMES alone than those in voluntary cycle ergometry and LF-NMES with passive cycle ergometry (P < 0.05). The blood lactate concentration was lower in LF-NMES with passive cycle ergometry than that in LF-NMES alone, but slightly higher than that in voluntary cycle ergometry (P < 0.05). Hemodynamic and metabolic responses of exercise with LF-NMES alone seemed consistent with insufficient peripheral perfusion based on the elevation of A-V̇ o 2 difference and blood lactate concentration. The findings suggest that combining passive cycle ergometry with LF-NMES improves the insufficient peripheral perfusion induced by LF-NMES alone. NEW & NOTEWORTHY: This is the first study to evaluate cardiac output, oxygen consumption, and A-V̇ o 2 difference during LF-NMES of endurance exercise modality. LF-NMES alone may not demonstrate hemodynamic responses induced by voluntary endurance exercise, however, demonstrates those when combined with passive cycle ergometry. LF-NMES with passive cycle ergometry may be a more effective approach in cardiac rehabilitation for patients without the ability of voluntary exercise because it may increase cardiac output and venous return as represented by the LVEDV. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 03636119
- Volume :
- 328
- Issue :
- 1
- Database :
- Academic Search Index
- Journal :
- American Journal of Physiology: Regulatory, Integrative & Comparative Physiology
- Publication Type :
- Academic Journal
- Accession number :
- 182189877
- Full Text :
- https://doi.org/10.1152/ajpregu.00141.2024