Back to Search
Start Over
Min-max theory for capillary surfaces.
- Source :
-
Journal für die Reine und Angewandte Mathematik . Jan2025, Vol. 2025 Issue 818, p215-262. 48p. - Publication Year :
- 2025
-
Abstract
- We develop a min-max theory for the construction of capillary surfaces in 3-manifolds with smooth boundary. In particular, for a generic set of ambient metrics, we prove the existence of nontrivial, smooth, almost properly embedded surfaces with any given constant mean curvature 푐, and with smooth boundary contacting at any given constant angle 휃. Moreover, if 푐 is nonzero and 휃 is not π 2 , then our min-max solution always has multiplicity one. We also establish a stable Bernstein theorem for minimal hypersurfaces with certain contact angles in higher dimensions. [ABSTRACT FROM AUTHOR]
- Subjects :
- *CONTACT angle
*HYPERSURFACES
*CURVATURE
*CAPILLARIES
*MULTIPLICITY (Mathematics)
Subjects
Details
- Language :
- English
- ISSN :
- 00754102
- Volume :
- 2025
- Issue :
- 818
- Database :
- Academic Search Index
- Journal :
- Journal für die Reine und Angewandte Mathematik
- Publication Type :
- Academic Journal
- Accession number :
- 182052904
- Full Text :
- https://doi.org/10.1515/crelle-2024-0075