Back to Search Start Over

Min-max theory for capillary surfaces.

Authors :
Li, Chao
Zhou, Xin
Zhu, Jonathan J.
Source :
Journal für die Reine und Angewandte Mathematik. Jan2025, Vol. 2025 Issue 818, p215-262. 48p.
Publication Year :
2025

Abstract

We develop a min-max theory for the construction of capillary surfaces in 3-manifolds with smooth boundary. In particular, for a generic set of ambient metrics, we prove the existence of nontrivial, smooth, almost properly embedded surfaces with any given constant mean curvature 푐, and with smooth boundary contacting at any given constant angle 휃. Moreover, if 푐 is nonzero and 휃 is not π 2 , then our min-max solution always has multiplicity one. We also establish a stable Bernstein theorem for minimal hypersurfaces with certain contact angles in higher dimensions. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00754102
Volume :
2025
Issue :
818
Database :
Academic Search Index
Journal :
Journal für die Reine und Angewandte Mathematik
Publication Type :
Academic Journal
Accession number :
182052904
Full Text :
https://doi.org/10.1515/crelle-2024-0075