Back to Search Start Over

Impact of Ion Migration on the Performance and Stability of Perovskite‐Based Tandem Solar Cells.

Authors :
Shah, Sahil
Yang, Fengjiu
Köhnen, Eike
Ugur, Esma
Khenkin, Mark
Thiesbrummel, Jarla
Li, Bor
Holte, Lucas
Berwig, Sebastian
Scherler, Florian
Forozi, Paria
Diekmann, Jonas
Peña‐Camargo, Francisco
Remec, Marko
Kalasariya, Nikhil
Aydin, Erkan
Lang, Felix
Snaith, Henry
Neher, Dieter
De Wolf, Stefaan
Source :
Advanced Energy Materials. 12/27/2024, Vol. 14 Issue 48, p1-9. 9p.
Publication Year :
2024

Abstract

The stability of perovskite‐based tandem solar cells (TSCs) is the last major scientific/technical challenge to be overcome before commercialization. Understanding the impact of mobile ions on the TSC performance is key to minimizing degradation. Here, a comprehensive study that combines an experimental analysis of ionic losses in Si/perovskite and all‐perovskite TSCs using scan‐rate‐dependent current–voltage (J–V) measurements with drift‐diffusion simulations is presented. The findings demonstrate that mobile ions have a significant influence on the tandem cell performance lowering the ion‐freeze power conversion efficiency from >31% for Si/perovskite and >30% for all‐perovskite tandems to ≈28% in steady‐state. Moreover, the ions cause a substantial hysteresis in Si/perovskite TSCs at high scan speeds (400 s−1), and significantly influence the performance degradation of both devices through internal field screening. Additionally, for all‐perovskite tandems, subcell‐dominated J–V characterization reveals more pronounced ionic losses in the wide‐bandgap subcell during aging, which is attributed to its tendency for halide segregation. This work provides valuable insights into ionic losses in perovskite‐based TSCs which helps to separate ion migration‐related degradation modes from other degradation mechanisms and guides targeted interventions for enhanced subcell efficiency and stability. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16146832
Volume :
14
Issue :
48
Database :
Academic Search Index
Journal :
Advanced Energy Materials
Publication Type :
Academic Journal
Accession number :
181921525
Full Text :
https://doi.org/10.1002/aenm.202400720