Back to Search
Start Over
Power-partible reduction and congruences for Apéry numbers.
- Source :
-
International Journal of Number Theory . Feb2025, Vol. 21 Issue 1, p23-34. 12p. - Publication Year :
- 2025
-
Abstract
- In this paper, we introduce the power-partible reduction for holonomic (or, P-recursive) sequences and apply it to obtain a series of congruences for Apéry numbers A k . In particular, we prove that, for any r ∈ ℕ , there exists an integer c ̃ r such that ∑ k = 0 p − 1 (2 k + 1) 2 r + 1 A k ≡ c ̃ r p (mod p 3) holds for any prime p > 3. [ABSTRACT FROM AUTHOR]
- Subjects :
- *INTEGERS
Subjects
Details
- Language :
- English
- ISSN :
- 17930421
- Volume :
- 21
- Issue :
- 1
- Database :
- Academic Search Index
- Journal :
- International Journal of Number Theory
- Publication Type :
- Academic Journal
- Accession number :
- 181731473
- Full Text :
- https://doi.org/10.1142/S1793042125500022