Back to Search Start Over

Power-partible reduction and congruences for Apéry numbers.

Authors :
Wang, Rong-Hua
Zhong, Michael X. X.
Source :
International Journal of Number Theory. Feb2025, Vol. 21 Issue 1, p23-34. 12p.
Publication Year :
2025

Abstract

In this paper, we introduce the power-partible reduction for holonomic (or, P-recursive) sequences and apply it to obtain a series of congruences for Apéry numbers A k . In particular, we prove that, for any r ∈ ℕ , there exists an integer c ̃ r such that ∑ k = 0 p − 1 (2 k + 1) 2 r + 1 A k ≡ c ̃ r p (mod p 3) holds for any prime p > 3. [ABSTRACT FROM AUTHOR]

Subjects

Subjects :
*INTEGERS

Details

Language :
English
ISSN :
17930421
Volume :
21
Issue :
1
Database :
Academic Search Index
Journal :
International Journal of Number Theory
Publication Type :
Academic Journal
Accession number :
181731473
Full Text :
https://doi.org/10.1142/S1793042125500022