Back to Search Start Over

A Scratch Intersection Model of Material Removal During Chemical Mechanical Planarization (CMP).

Authors :
Wei Che
Yongjin Guo
Chandra, Abhijit
Bastawros, Ashraf
Source :
Journal of Manufacturing Science & Engineering. Aug2005, Vol. 127 Issue 3, p545-554. 10p.
Publication Year :
2005

Abstract

A scratch inetersection based material removal mechanism for CMP processes ix proposed in this paper. The experimentally observed deformation pattern by SEM and the trends of the measured force profiles (Che et al., 2003) reveal that, for an isolated shallow scratch. the material is mainly plowed sideway along the track of the abrasive particle with no net material removal. However, it is observed that material is detached close to the intersection zone of two scratches. Motivated by this observation, it is speculated that the deformation mechanism changes from ploughing mode to shear-segmentation mode as the abrasive particle approaches the intersection of two scratches under small indentation depth for ductile metals. The proposed mechanistic material removal rate (MRR) model yields Preston constant similar to those observed experimentally for CMP processes. The proposed model also reveals that the nature of the slurry-pad interaction mechanism, and its associated force partitioning mechanism, is important for determining the variation of MRR with particle size and concentration. It is observed that under relatively soft pads, small particles and low particle concentration, the pad undergoes local deformation, yielding an increased MRR with increasing particle size and concentration. At the other extreme, the intact walls of the surface cells and the connecting cell walls between the surface pores deform globally, resembling a beam or a plate, and a decreasing trend in MRR is observed with increasing particle size and concentration. The predicted MRR trends are compared to existing experimental observations. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10871357
Volume :
127
Issue :
3
Database :
Academic Search Index
Journal :
Journal of Manufacturing Science & Engineering
Publication Type :
Academic Journal
Accession number :
18123806
Full Text :
https://doi.org/10.1115/1.1949616