Back to Search
Start Over
Piezoresistive, Piezocapacitive and Memcapacitive Silk Fibroin-Based Cement Mortars.
- Source :
-
Sensors (14248220) . Nov2024, Vol. 24 Issue 22, p7357. 12p. - Publication Year :
- 2024
-
Abstract
- Water-stable proteins may offer a new field of applications in smart materials for buildings and infrastructures where hydraulic reactions are involved. In this study, cement mortars modified through water-soluble silk fibroin (SF) are proposed. Water-soluble SF obtained by redissolving SF films in phosphate buffer solution (PBS) showed the formation of a gel with the β sheet features of silk II. Electrical measurements of SF indicate that calcium ions are primarily involved in the conductivity mechanism. By exploiting the water solubility properties of silk II and Ca2+ ion transport phenomena as well as their trapping effect on water molecules, SF provides piezoresistive and piezocapacitive properties to cement mortars, thus enabling self-sensing of mechanical strain, which is quite attractive in structural health monitoring applications. The SF/cement-based composite introduces a capacitive gauge factor which surpasses the traditional resistive gauge factor reported in the literature by threefold. Cyclic voltammetry measurements demonstrated that the SF/cement mortars possessed memcapacitive behavior for positive potentials near +5 V, which was attributed to an interfacial charge build-up modulated by the SF concentration and the working electrode. Electrical square-biphasic excitation combined with cyclic compressive loads revealed memristive behavior during the unloading stages. These findings, along with the availability and sustainability of SF, pave the way for the design of novel multifunctional materials, particularly for applications in masonry and concrete structures. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 14248220
- Volume :
- 24
- Issue :
- 22
- Database :
- Academic Search Index
- Journal :
- Sensors (14248220)
- Publication Type :
- Academic Journal
- Accession number :
- 181205095
- Full Text :
- https://doi.org/10.3390/s24227357