Back to Search Start Over

Improved Surface Electromyogram-Based Hand–Wrist Force Estimation Using Deep Neural Networks and Cross-Joint Transfer Learning.

Authors :
Wang, Haopeng
Wang, He
Dai, Chenyun
Huang, Xinming
Clancy, Edward A.
Source :
Sensors (14248220). Nov2024, Vol. 24 Issue 22, p7301. 15p.
Publication Year :
2024

Abstract

Deep neural networks (DNNs) and transfer learning (TL) have been used to improve surface electromyogram (sEMG)-based force estimation. However, prior studies focused mostly on applying TL within one joint, which limits dataset size and diversity. Herein, we investigated cross-joint TL between two upper-limb joints with four DNN architectures using sliding windows. We used two feedforward and two recurrent DNN models with feature engineering and feature learning, respectively. We found that the dependencies between sEMG and force are short-term (<400 ms) and that sliding windows are sufficient to capture them, suggesting that more complicated recurrent structures may not be necessary. Also, using DNN architectures reduced the required sliding window length. A model pre-trained on elbow data was fine-tuned on hand–wrist data, improving force estimation accuracy and reducing the required training data amount. A convolutional neural network with a 391 ms sliding window fine-tuned using 20 s of training data had an error of 6.03 ± 0.49% maximum voluntary torque, which is statistically lower than both our multilayer perceptron model with TL and a linear regression model using 40 s of training data. The success of TL between two distinct joints could help enrich the data available for future deep learning-related studies. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14248220
Volume :
24
Issue :
22
Database :
Academic Search Index
Journal :
Sensors (14248220)
Publication Type :
Academic Journal
Accession number :
181205039
Full Text :
https://doi.org/10.3390/s24227301