Back to Search Start Over

Landslide susceptibility prediction and mapping in Taihang mountainous area based on optimized machine learning model with genetic algorithm.

Authors :
Jiang, Junjie
Wang, Qizhi
Luan, Shihao
Gao, Minghui
Liang, Huijie
Zheng, Jun
Yuan, Wei
Ji, Xiaolei
Source :
Earth Science Informatics. Dec2024, Vol. 17 Issue 6, p5539-5559. 21p.
Publication Year :
2024

Abstract

The Taihang Mountains in China span numerous cities, where landslide disasters occur frequently in the mountainous areas, jeopardizing the lives and properties of residents. Consequently, it is of great significance to focus on prevention and control of landslide disasters in the region. Currently, a single model is commonly employed to analyze landslide susceptibility mapping (LSM), but the accuracy of the results fails to meet the demands of early warning, prevention, and control. This paper focuses on the Taihang Mountain area as the research area, organizes the collection of landslide disaster potential points and related influence factor data, and employs the information quantity method to derive a composite machine learning model by coupling with Random Forest (RF) and Extreme Gradient Boosting (XGB), subsequently utilizing the Genetic Optimization Algorithm (GA) to optimize the model. The performance of the composite model is enhanced using the Genetic Algorithm (GA), employing accuracy, regression rate, precision, F1 score, AUC value, and Taylor diagram to evaluate the comprehensive accuracy of the model results, with a susceptibility map generated for comparative analysis. The results demonstrate that the IV-GA-RF model performs optimally (accuracy = 0.956, precision = 0.96, recall = 0.953, F1 score = 0.957, AUC = 0.946 for the testing set, AUC = 0.929 for the training set), with all-around improvement in performance metrics compared to the unoptimized composite model, with metric values improving by 0.044, 0.051, 0.046, 0.044, 0.021 and 0.020, respectively. The IV-GA-RF model exhibits a significant advantage over the IV-GA-XGB algorithm, also optimized using the GA algorithm. The accuracy of the susceptibility map produced by the IV-GA-RF model is superior, as assessed by the Seed Cell Area Index (SCAI) method. The four factors of slope, rainfall, seismicity, and stratigraphic lithology are crucial in determining the occurrence of landslides in the study area. In summary, the IV-GA-RF model can be utilized as an effective model for analyzing landslide disasters, providing a reference for research in this field and contributing scientific insights to disaster prevention and control efforts in the study area; simultaneously, the concept of the composite optimization model introduces new perspectives into this field. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
18650473
Volume :
17
Issue :
6
Database :
Academic Search Index
Journal :
Earth Science Informatics
Publication Type :
Academic Journal
Accession number :
180989351
Full Text :
https://doi.org/10.1007/s12145-024-01470-9