Back to Search
Start Over
Sharp lower bounds on the metric dimension of circulant graphs.
- Source :
-
Communications in Combinatorics & Optimization . Mar2025, Vol. 10 Issue 1, p79-98. 20p. - Publication Year :
- 2025
-
Abstract
- For n ≥ 2t + 1 where t ≥ 1, the circulant graph Cn(1, 2, ..., t) consists of the vertices v0, v1, v2, ..., vn-1 and the edges vivi+1, vivi+2, ..., vivi+t, where i = 0, 1, 2, ..., n-1, and the subscripts are taken modulo n. We prove that the metric dimension dim(Cn(1, 2, ..., t)) ≥ ... + 1 for t ≥ 5, where the equality holds if and only if t = 5 and n = 13. Thus dim(Cn(1, 2, ..., t)) ≥ ... + 2 for t ≥ 6. This bound is sharp for every t ≥ 6. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 25382128
- Volume :
- 10
- Issue :
- 1
- Database :
- Academic Search Index
- Journal :
- Communications in Combinatorics & Optimization
- Publication Type :
- Academic Journal
- Accession number :
- 180958403
- Full Text :
- https://doi.org/10.22049/cco.2023.28792.1725