Back to Search
Start Over
Structure, microstructure, and ESR properties of concentration-dependent Zn1-xMnxO nanoparticles.
- Source :
-
Ceramics International . Dec2024:Part B, Vol. 50 Issue 23, p50855-50866. 12p. - Publication Year :
- 2024
-
Abstract
- In this study, the estimated stress, strain, and crystallite sizes of different Mn-doped ZnO nanoparticles were calculated using the Williamson-Hall method and compared with the values obtained from the Debye-Scherrer formula. Moreover, defects, and magnetic properties of Mn-doped ZnO nanoparticles at different concentrations were investigated. The sol-gel method was used to synthesize nanoparticles. The X-ray diffraction and Rietveld analysis results confirm that the desired structure is formed and that no secondary phase is present up to an Mn concentration of x = 0.2. In and out of plane lattice parameters, cell volumes, bond length, atomic locality, and dislocation density (δ) were clarified. The grain size of the concentration-dependent samples was provided by scanning electron microscope. Photoluminescence (PL) spectra exhibited ultraviolet emission along with a broad band encompassing violet, blue, and red regions, attributed to defect-related and excitonic emissions. These emissions were notably influenced by synthesis conditions and doping elements and ratios. Electron spin resonance properties of the concentration-dependent samples were analyzed to figure out the g-factor through line widths of pike-to-pike (ΔHPP) of ESR spectra. Mn-doped ZnO nanoparticles exhibited ferromagnetism at room temperature. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 02728842
- Volume :
- 50
- Issue :
- 23
- Database :
- Academic Search Index
- Journal :
- Ceramics International
- Publication Type :
- Academic Journal
- Accession number :
- 180953805
- Full Text :
- https://doi.org/10.1016/j.ceramint.2024.09.432