Back to Search Start Over

Encapsulation of soybean lunasin and amaranth unsaponifiable matter in liposomes induces cell cycle arrest in an allograft melanoma mouse model.

Authors :
Castañeda-Reyes, Erick Damián
Gonzalez-Almazán, Alejandro
Lubbert-Licón, Alán
Yahya, Najwa Farhana
Gonzalez de Mejia, Elvira
Source :
Scientific Reports. 11/14/2024, Vol. 12 Issue 1, p1-12. 12p.
Publication Year :
2024

Abstract

Melanoma is the most aggressive type of skin cancer and can metastasize during primary tumor formation. This research aimed to determine the relationship between the prevention of melanoma development in a mouse model treated with liposomes loaded with soybean lunasin and amaranth unsaponifiable matter (UM + LunLip) and cell cycle arrest. Tumors excised from C57BL/6 mice treated topically or subcutaneously with UM + LunLip were subjected to immunohistochemistry. Markers related to cell cycle inhibition (p16, p21, p27, and p53) and markers involved in cell cycle progression (cyclin-dependent kinase, CDK6, and cyclin D1) were assessed. The results showed that UM + LunLip had antitumor activity in C57BL/6 mice treated either topically or subcutaneously by p16, p21, p27, and p53 overexpression (up to 572-, 134-, 30-, and 57-fold change, FC, respectively) in the tumors of mice treated with 30 mg UM + LunLip/kg body weight compared with the tumor-bearing untreated control. However, CDK6 and cyclin D1 expression was not inhibited (up to 1.37 FC and 2.09 FC, respectively), which is a typical behavior of cyclin D in melanoma. Therefore, melanoma tumor development was prevented by the overexpression of cell cycle inhibitors p16, p21, p27, and p53 due to UM + LunLip treatments. Since the topical application was effective, less invasive, and more practical for the user, this application will be recommended for future steps in in vivo studies. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20452322
Volume :
12
Issue :
1
Database :
Academic Search Index
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
180905651
Full Text :
https://doi.org/10.1038/s41598-024-79448-2