Back to Search Start Over

Glucose-fueled cationic nanomotors for promoting the healing of infected diabetic wounds.

Authors :
Hu, Junyi
Xu, Leilei
Cao, Jingjing
Lin, Jinwei
Lian, Chenxi
Guan, Jianguo
Source :
Journal of Colloid & Interface Science. Feb2025:Part A, Vol. 679, p747-759. 13p.
Publication Year :
2025

Abstract

[Display omitted] Hyperglycemia-promoted bacterial infection will seriously exacerbate diabetic wounds, and its current clinical treatments are suffering from the adverse effects associated with off-target, bacterial resistance, and glycemic fluctuation. Herein, we present a kind of glucose-fueled cationic nanomotors capable of remarkably enhancing antibacterial efficacy, and thus expediting diabetic wound healing. The nanomotors have positively charged surfaces, and consist of mesoporous bowl-shaped polydopamine nanoparticles grafted with quaternized polymer brushes and coupled with glucose oxidase (GOx) and catalase (CAT). Stemming from the GOx-CAT cascade reaction in diabetic wound microenvironment, they can perform robust chemotactic motion towards both high glucose regions, where bacteria proliferation predominantly occurs, and elevated H 2 O 2 levels, which bacterial metabolism produced. This enables the nanomotors to facilitate targeted migration towards bacteria-rich regions and simultaneous downregulation of glycemic levels, as well as to significantly enhance the electrostatic interaction between antibacterial components and bacteria. Consequently, the nanomotors exhibit amplified contact-killing effects of their attached cationic molecules, leading to an almost 10-fold enhancement in antibacterial efficacy compared to previous counterparts. The in vivo experiments approved that the nanomotors demonstrated the accelerated healing of infected diabetic wounds by S. aureus and biosafety. The results herein provide an insight into the clinical treatment of infected diabetic wounds. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219797
Volume :
679
Database :
Academic Search Index
Journal :
Journal of Colloid & Interface Science
Publication Type :
Academic Journal
Accession number :
180855354
Full Text :
https://doi.org/10.1016/j.jcis.2024.10.011