Back to Search Start Over

Photodegradation of 1,5-DHN to juglone as a biocompatible compound, using a metalloporphyrin-based mixed metal–metal organic framework: Synthesis, characterization, and photocatalytic behavior.

Authors :
Bokaei, Forough
Rahimi, Rahmatollah
Rabbani, Mahboubeh
Source :
Journal of Nanoparticle Research. Oct2024, Vol. 26 Issue 10, p1-29. 29p.
Publication Year :
2024

Abstract

In this study, our research was focused on the synthesis and characterizing of novel mixed metal–metal organic frameworks (MM-MOFs) incorporating porphyrin ligands. Furthermore, we investigated their performance in photodegrading 1,5-dihydroxynaphthalene (1,5-DHN) into 5-hydroxy-1,4-naphthalenedione (Juglone). Integrating metalloporphyrin-based ligands into bimetallic MOFs represents a pioneering advancement in this field. Photocatalytic reactions were conducted using various stoichiometric ratios of Co and Zn as metal nodes, along with meso-tetra(4-carboxyphenyl)porphyrin (TCPP-H2) and Mn(III) meso-tetra(4-carboxyphenyl)porphyrin chloride (Mn-TCPP) as linkers. Results revealed that Co as a node led to the formation of nanorod metal–organic frameworks (MOF) structures, while Zn enhanced photocatalytic activity. Significantly, a photodegradation yield of 72% was achieved with a 1:3 molar ratio of Co to Zn in Zn75%/Co25 (TCPP-Mn), demonstrating a synergistic interplay between Co to Zn nodes and Mn-porphyrin linkers. Characterization was performed using structural and microscopic methods. Additionally, various parameters were optimized to elucidate the photocatalytic mechanism, revealing the promising potential of MM-MOFs for efficient photodegradation of 1,5-DHN and beyond. It is noteworthy that the integration of metalloporphyrin-based structures into MM-MOFs for photodegradation processes is relatively uncommon, underscoring the novelty and potential significance of incorporating porphyrin-based ligands in mixed metal MOFs for photodegradation applications. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
13880764
Volume :
26
Issue :
10
Database :
Academic Search Index
Journal :
Journal of Nanoparticle Research
Publication Type :
Academic Journal
Accession number :
180806041
Full Text :
https://doi.org/10.1007/s11051-024-06138-5