Back to Search
Start Over
Repeated inhalation of GM-CSF by nonhuman primates induces bronchus-associated lymphoid tissue along the lower respiratory tract.
- Source :
-
Respiratory Research . 11/10/2024, Vol. 25 Issue 1, p1-16. 16p. - Publication Year :
- 2024
-
Abstract
- Background: Repeated inhalation of granulocyte-macrophage colony-stimulating factor (GM-CSF) was recently approved in Japan as a treatment for autoimmune pulmonary alveolar proteinosis. However, the detailed physiological and pathological effects of repeated inhalation in the long term, especially at increasing doses, remain unclear. Methods: In this chronic safety study, we administered 24 cynomolgus monkeys (Macaca fascicularis) aged 2–3 years with aerosolized sargramostim (a yeast-derived recombinant human GM-CSF [rhGM-CSF]) biweekly for 26 weeks across four dosing groups (0, 5, 100, and 500 µg/kg/day). We measured the serum GM-CSF antibody (GM-Ab) concentration by an ELISA and assessed the neutralizing capacity of GM-Ab using the GM-CSF-dependent cell line TF-1. We subjected lung tissue samples taken from all monkeys at 27 weeks to histopathological assessment using a sargramostim-specific monoclonal antibody to detect localization of residual sargramostim. Results: All the animals maintained good body condition and showed steady weight gain throughout the study. The pathological analyses of the lung revealed the formation of induced bronchus-associated lymphoid tissue (iBALT) in the lower respiratory tract, even at the clinical dose of 5 µg/kg/day. There was a relationship between the number or size of BALT and sargramostim dose or the serum GM-Ab levels. Immunohistochemical analyses revealed GM-Ab–producing cells in the follicular region of iBALT, with residual sargramostim in the follicles. Leucocyte counts were inversely correlated with GM-Ab levels in the high-dose groups. Additionally, serum GM-Ab from the treated animals significantly suppressed the alveolar macrophage proliferation activity of both Cynomolgus recombinant and rhGM-CSF in vitro. Conclusion: Long-term repeated inhalation of sargramostim led to iBALT formation in the lower respiratory tract, even at the clinical dose of 5 µg/kg/day, with the extent of iBALT formation increasing in a dose-dependent manner. Inhaled sargramostim was localized to the follicular region of iBALT nodules, which may induce the production of GM-Ab. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 14659921
- Volume :
- 25
- Issue :
- 1
- Database :
- Academic Search Index
- Journal :
- Respiratory Research
- Publication Type :
- Academic Journal
- Accession number :
- 180803853
- Full Text :
- https://doi.org/10.1186/s12931-024-03003-w