Back to Search
Start Over
Consistency Self-Training Semi-Supervised Method for Road Extraction from Remote Sensing Images.
- Source :
-
Remote Sensing . Nov2024, Vol. 16 Issue 21, p3945. 15p. - Publication Year :
- 2024
-
Abstract
- Road extraction techniques based on remote sensing image have significantly advanced. Currently, fully supervised road segmentation neural networks based on remote sensing images require a significant number of densely labeled road samples, limiting their applicability in large-scale scenarios. Consequently, semi-supervised methods that utilize fewer labeled data have gained increasing attention. However, the imbalance between a small quantity of labeled data and a large volume of unlabeled data leads to local detail errors and overall cognitive mistakes in semi-supervised road extraction. To address this challenge, this paper proposes a novel consistency self-training semi-supervised method (CSSnet), which effectively learns from a limited number of labeled data samples and a large amount of unlabeled data. This method integrates self-training semi-supervised segmentation with semi-supervised classification. The semi-supervised segmentation component relies on an enhanced generative adversarial network for semantic segmentation, which significantly reduces local detail errors. The semi-supervised classification component relies on an upgraded mean-teacher network to handle overall cognitive errors. Our method exhibits excellent performance with a modest amount of labeled data. This study was validated on three separate road datasets comprising high-resolution remote sensing satellite images and UAV photographs. Experimental findings showed that our method consistently outperformed state-of-the-art semi-supervised methods and several classic fully supervised methods. [ABSTRACT FROM AUTHOR]
- Subjects :
- *GENERATIVE adversarial networks
*REMOTE sensing
*EXTRACTION techniques
Subjects
Details
- Language :
- English
- ISSN :
- 20724292
- Volume :
- 16
- Issue :
- 21
- Database :
- Academic Search Index
- Journal :
- Remote Sensing
- Publication Type :
- Academic Journal
- Accession number :
- 180782455
- Full Text :
- https://doi.org/10.3390/rs16213945