Back to Search Start Over

Fracture Toughness of Short Fibre-Reinforced Composites—In Vitro Study.

Authors :
Kamourieh, Noor
Faigenblum, Maurice
Blizard, Robert
Leung, Albert
Fine, Peter
Source :
Materials (1996-1944). Nov2024, Vol. 17 Issue 21, p5368. 12p.
Publication Year :
2024

Abstract

The development of dental materials needs to be supported with sound evidence. This in vitro study aimed to measure the fracture toughness of a short fibre-reinforced composite (sFRC), at differing thicknesses. In this study, 2 mm, 3 mm and 4 mm depths of sFRC were prepared. Using ISO4049, each preparation was tested to failure. A total of 60 samples were tested: 10 samples for each combination of sFRC and depth. Fractured samples were viewed, and outcomes were analysed. EXF showed greater toughness than EXP, with a mean of 2.49 (95%CI: 2.25, 2.73) MPa.m1/2 compared to a mean of 2.13 (95%CI: 1.95, 2.31) MPa.m1/2, (F(1,54) = 21.28; p < 0.001). This difference was particularly pronounced at 2 mm depths where the mean (95%CI) values were 2.72 (2.49, 2.95) for EXF and 1.90 (1.78, 2.02) for EXP (Interaction F(2,54) = 7.93; p < 0.001). Both materials performed similarly at the depths of 3 mm and 4 mm. The results for both materials were within the accepted fracture toughness values of dentine of 1.79–3.08 MPa.m1/2. Analysis showed crack deflection and bridging fibre behaviour. The optimal thickness at the cavity base for EXF was 2 mm and for EXP 4 mm. Crack deflection and bridging behaviour indicated that restorations incorporating sFRCs are not prone to catastrophic failure and confirmed that sFRCs have similar fracture toughness to dentine. sFRCs could be a suitable biomimetic material to replace dentine. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19961944
Volume :
17
Issue :
21
Database :
Academic Search Index
Journal :
Materials (1996-1944)
Publication Type :
Academic Journal
Accession number :
180781497
Full Text :
https://doi.org/10.3390/ma17215368