Back to Search Start Over

Single-Cell RNA Sequencing Reveals Monocyte-Derived Interstitial Macrophages with a Pro-Fibrotic Phenotype in Bleomycin-Induced Pulmonary Fibrosis.

Authors :
Wang, Shunli
Li, Jie
Wu, Caixia
Lei, Zhengyao
Wang, Tong
Huang, Xinxin
Zhang, Suxia
Liu, Yuting
Bi, Xiaohan
Zheng, Fanshuo
Zhu, Xuyou
Huang, Ziling
Yi, Xianghua
Source :
International Journal of Molecular Sciences. Nov2024, Vol. 25 Issue 21, p11669. 20p.
Publication Year :
2024

Abstract

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease with limited effective therapies. Interstitial macrophages (IMs), especially those derived from monocytes, play an unknown role in IPF pathogenesis. By using single-cell RNA sequencing (scRNA-seq), bleomycin (BLM)-induced pulmonary fibrosis mouse lungs were analyzed to characterize the cellular landscape and heterogeneity of macrophages in this model. scRNA-seq was used to identify distinct interstitial macrophage subpopulations in fibrotic lungs, with monocyte-derived macrophages exhibiting a pro-fibrotic gene expression profile enriched in wound healing, extracellular matrix (ECM) remodeling, and pro-fibrotic cytokine production functions. A pseudotime analysis revealed that IMs originated from monocytes and differentiated along a specific trajectory. A cell–cell communication analysis demonstrated strong interactions between monocyte-derived interstitial macrophages (Mo-IMs) and fibroblasts through the transforming growth factor beta (TGFβ), secreted phosphoprotein 1 (SPP1), and platelet-derived growth factor (PDGF) signaling pathways. Flow cytometry validated the presence and expansion of Mo-IMs subpopulations in BLM-treated mice. This study reveals the cellular heterogeneity and developmental trajectory of lung macrophages in early BLM-induced pulmonary fibrosis, highlighting the crucial role of Mo-IMs with a pro-fibrotic phenotype in IPF pathogenesis via interactions with fibroblasts. Targeting these specific macrophage subpopulations and associated signaling pathways may provide novel therapeutic strategies for IPF. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16616596
Volume :
25
Issue :
21
Database :
Academic Search Index
Journal :
International Journal of Molecular Sciences
Publication Type :
Academic Journal
Accession number :
180780155
Full Text :
https://doi.org/10.3390/ijms252111669