Back to Search Start Over

Spatial network disintegration based on spatial coverage.

Authors :
Deng, Ye
Wang, Zhigang
Xiao, Yu
Shen, Xiaoda
Kurths, Jürgen
Wu, Jun
Source :
Reliability Engineering & System Safety. Jan2025, Vol. 253, pN.PAG-N.PAG. 1p.
Publication Year :
2025

Abstract

The problem of network disintegration, such as interrupting rumor spreading networks and dismantling terrorist networks, involves evaluating changes in network performance. However, traditional metrics primarily focus on the topological structure and often neglect the crucial spatial attributes of nodes and edges, thereby failing to capture the spatial functional losses. Here we first introduce the concept of spatial coverage to evaluate the spatial network performance, which is defined as the convex hull area of the largest connected component. Then a greedy algorithm is proposed to maximize the reduction of the convex hull area through strategic node removals. Extensive experiments verified that the spatial coverage metric can effectively quantify changes in the performance of spatial networks, and the proposed algorithm can maximize the reduction of the convex hull area of the largest connected component compared to genetic algorithm and centrality strategies. Specifically, our algorithm reduces the convex hull area by up to 30% compared to the best-performing strategy. These results indicate that the critical nodes influencing network performance are a combination of numerous peripheral spatial leaf nodes and a few central spatial core nodes. This study substantially enhances our understanding of spatial network robustness and provides a novel perspective for network optimization. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09518320
Volume :
253
Database :
Academic Search Index
Journal :
Reliability Engineering & System Safety
Publication Type :
Academic Journal
Accession number :
180771947
Full Text :
https://doi.org/10.1016/j.ress.2024.110525