Back to Search Start Over

Preparation and characterization of β-cyclodextrin capped magnetic nanoparticles anchored on cellulosic matrix for removal of cr(VI) from mimicked wastewater: Adsorption and kinetic studies.

Authors :
Mesoppirr, Lynda S.
Suter, Evans K.
Omwoyo, Wesley N.
Oyaro, Nathan M.
Nelana, Simphiwe M.
Source :
Journal of Environmental Science & Health. Part A. Toxic/Hazardous Substances & Environmental Engineering. Nov2024, p1-16. 16p. 15 Illustrations.
Publication Year :
2024

Abstract

AbstractHexavalent Chromium (Cr(VI)) is essential in many industrial processes. However, it finds its way into water bodies, posing health problems, including lung cancer and the inhibition of DNA and RNA in biological systems. Several chemical and traditional water purification methods have been developed in the past, but most are expensive, tedious and ineffective. This study aimed to prepare and characterize a low-cost hybrid adsorbent, β-Cyclodextrin capped magnetic nanoparticles anchored on a cellulosic matrix (CNC-Fe3O4NP-CD). The characterization techniques confirmed the integration of CNCs, Fe3O4NP and CD into the prepared CNC-Fe3O4NP-CD nanocomposite adsorbent. The adsorbent was employed in batch adsorption experiments by varying adsorption parameters, including solution pH, adsorbent dosage, initial Cr(VI) concentration, and contact time. From the findings, the nanocomposite adsorbent achieved a maximum Cr(VI) removal efficiency of 97.45%, while the pseudo-second-order kinetic model best fitted the experimental data with high linear regression coefficients (R2 > 0.98). The Elovich model indicated that the adsorption process was driven by chemisorption on heterogeneous surface sites, with initial sorption rates surpassing desorption rates. These findings established that CNC-Fe3O4NP-CD presents high efficiency for Cr(VI) removal under acidic pH, offering the potential for optimization and application in real-world wastewater treatment. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10934529
Database :
Academic Search Index
Journal :
Journal of Environmental Science & Health. Part A. Toxic/Hazardous Substances & Environmental Engineering
Publication Type :
Academic Journal
Accession number :
180723010
Full Text :
https://doi.org/10.1080/10934529.2024.2424084