Back to Search Start Over

PangeBlocks: customized construction of pangenome graphs via maximal blocks.

Authors :
Avila Cartes, Jorge
Bonizzoni, Paola
Ciccolella, Simone
Della Vedova, Gianluca
Denti, Luca
Source :
BMC Bioinformatics. 11/4/2024, Vol. 25 Issue 1, p1-23. 23p.
Publication Year :
2024

Abstract

Background: The construction of a pangenome graph is a fundamental task in pangenomics. A natural theoretical question is how to formalize the computational problem of building an optimal pangenome graph, making explicit the underlying optimization criterion and the set of feasible solutions. Current approaches build a pangenome graph with some heuristics, without assuming some explicit optimization criteria. Thus it is unclear how a specific optimization criterion affects the graph topology and downstream analysis, like read mapping and variant calling. Results: In this paper, by leveraging the notion of maximal block in a Multiple Sequence Alignment (MSA), we reframe the pangenome graph construction problem as an exact cover problem on blocks called Minimum Weighted Block Cover (MWBC). Then we propose an Integer Linear Programming (ILP) formulation for the MWBC problem that allows us to study the most natural objective functions for building a graph. We provide an implementation of the ILP approach for solving the MWBC and we evaluate it on SARS-CoV-2 complete genomes, showing how different objective functions lead to pangenome graphs that have different properties, hinting that the specific downstream task can drive the graph construction phase. Conclusion: We show that a customized construction of a pangenome graph based on selecting objective functions has a direct impact on the resulting graphs. In particular, our formalization of the MWBC problem, based on finding an optimal subset of blocks covering an MSA, paves the way to novel practical approaches to graph representations of an MSA where the user can guide the construction. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14712105
Volume :
25
Issue :
1
Database :
Academic Search Index
Journal :
BMC Bioinformatics
Publication Type :
Academic Journal
Accession number :
180654428
Full Text :
https://doi.org/10.1186/s12859-024-05958-5